Combining deconvolution and noise analysis for the estimation of transmitter release rates at the calyx of held.
نویسندگان
چکیده
The deconvolution method has been used in the past to estimate release rates of synaptic vesicles, but it cannot be applied to synapses where nonlinear interactions of quanta occur. We have extended this method to take into account a nonlinear current component resulting from the delayed clearance of glutamate from the synaptic cleft. We applied it to the calyx of Held and verified the important assumption of constant miniature EPSC (mEPSC) size by combining deconvolution with a variant of nonstationary fluctuation analysis. We found that amplitudes of mEPSCs decreased strongly after extended synaptic activity. Cyclothiazide (CTZ), an inhibitor of glutamate receptor desensitization, eliminated this reduction, suggesting that postsynaptic receptor desensitization occurs during strong synaptic activity at the calyx of Held. Constant mEPSC sizes could be obtained in the presence of CTZ and kynurenic acid (Kyn), a low-affinity blocker of AMPA-receptor channels. CTZ and Kyn prevented postsynaptic receptor desensitization and saturation and also minimized voltage-clamp errors. Therefore, we conclude that in the presence of these drugs, release rates at the calyx of Held can be reliably estimated over a wide range of conditions. Moreover, the method presented should provide a convenient way to study the kinetics of transmitter release at other synapses.
منابع مشابه
Combining deconvolution and fluctuation analysis to determine quantal parameters and release rates.
Analysis methods are described which integrate information from fluctuation analysis with that from deconvolution. Together the two approaches allow to derive a consistent quantitative description of quantal release (both evoked, spontaneous and asynchronous) under conditions in which quantal parameters may change during a repetitively applied stimulation protocol. Specifically, our methods tak...
متن کاملQuantitative relationship between transmitter release and calcium current at the calyx of held synapse.
A newly developed deconvolution method (Neher and Sakaba, 2001) allowed us to resolve the time course of neurotransmitter release at the calyx of Held synapse and to quantify some basic aspects of transmitter release. First, we identified a readily releasable pool (RRP) of synaptic vesicles. We found that the size of the RRP, when tested with trains of strong stimuli, was constant regardless of...
متن کاملCa2+ channel to synaptic vesicle distance accounts for the readily releasable pool kinetics at a functionally mature auditory synapse.
Precise regulation of synaptic vesicle (SV) release at the calyx of Held is critical for auditory processing. At the prehearing calyx of Held, synchronous and asynchronous release is mediated by fast and slow releasing SVs within the readily releasable pool (RRP). However, the posthearing calyx has dramatically different release properties. Whether developmental alterations in RRP properties co...
متن کاملPresynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held.
Large excitatory synapses in the auditory system, such as the calyx of Held, faithfully transmit trains of action potentials up to a frequency of a few hundred hertz, and these synapses are thought to display a limited repertoire of synaptic plasticity. Here, we show that brief trains of 100 Hz stimulation induce posttetanic potentiation (PTP) of transmitter release at the calyx of Held. In you...
متن کاملcAMP Modulates Intracellular Ca Sensitivity of Fast-Releasing Synaptic Vesicles at the Calyx of Held Synapse
Yao L, Sakaba T. cAMP modulates intracellular Ca sensitivity of fast-releasing synaptic vesicles at the calyx of Held synapse. J Neurophysiol 104: 3250–3260, 2010. First published September 22, 2010; doi:10.1152/jn.00685.2010. cAMP potentiates neurotransmitter release from the presynaptic terminal in many CNS synapses, but the underlying mechanisms remain unclear. Here we addressed this issue q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2001